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Abstract

In this note, we share an ongoing work (to be made public soon) pre-
senting some improvements for the PERK digital signature scheme. Sim-
ilarly to the recent improvement of MIRA and RYDE [BFG*24], PERK
can be improved by introducing a new MPCitH modeling for the PKP
problem along with the VOLEitH proof system. Doing so, the PERK
signature size is reduced and can reach 3.8 kB for NIST-1 security level.
In addition, the proposed modification allows PERK to rely on on the
standard PKP assumption rather than the currently used r-IPKP variant.

1 Introduction

The PERK signature scheme [ABB'23] is a Multi Party Computation in the
Head (MPCitH) based scheme relying on the Permuted Kernel Problem (PKP).
The PKP problem (along with the first PoK for PKP) was introduced by Shamir
more than 30 years ago [Sha90] and has withstood cryptanalysis efforts since
then [Geo92, BCCGY93,PC94,JJ01,LP11, KMP19,PT21,SBC22]. PERK is the
only candidate in the NIST’s Post-Quantum Cryptography Standardization of
Additional Digital Signature Schemes Project that relies on the PKP problem.
As such, it provides some diversity in this new standardization effort which was
one of the advertised goal of the NIST which is looking for “additional general-
purpose signature schemes that are not based on structured lattices” [NIS22].

PERK is built from the combination of three components: (i) an MPCitH
modeling for a PKP related assumption, (ii) an MPCitH based proof system
and (iii) the Fiat-Shamir transform. In this note, we describe a new MPCitH
modeling for the PKP problem based on a permutation matrix. Using this
modeling along with the recent VOLEitH framework, the size of the PERK
signatures can be significantly reduced as highlighted in Table 1. In addition,
thanks to these modifications, the security of the scheme can be based on the
standard PKP assumption (with the underlying field F; being an extension of Fy)
while the current version relies on a relaxed PKP assumption denoted r-IPKP.



Overall, with this improvement, the PERK scheme has the following properties:

e Security based on PKP. PERK is the only candidate in the ongoing
NIST’s PQC Standardization effort relying on the PKP problem ;

e Shorter signature sizes. PERK has signatures ranging from 3.8 kB for
its short instance to 4.6 kB for its fast instance for NIST-1 security level ;

e Short key sizes. PERK compressed keys are very short. In addition,
the expanded public key of PERK is around 20 kB which might be an
advantage in memory constrained environments.

Proof Size
Instance Security Modeling System (Sig.+pk)
Shared
PERK (Original) r-IPKP Permutation MPCitH 6.1 - 8.4 kB
Permutation
PERK-2 (New) PKP Matrix VOLEitH 3.9 -4.7kB

Table 1: Expected modifications for PERK (sizes for NIST-1 security level)

2 The Permuted Kernel Problem

The security of PERK relies on the Permuted Kernel Problem (PKP). More
precisely, the current version of PERK relies on a variant of PKP denoted r-IPKP
for relaxed inhomegeneous PKP [ABB*23|. One should note that the proposed
improvement for PERK relies on the standard PKP assumption (with ¢ = 2)
rather than the r-IPKP variant.

Definition 1 (Permuted Kernel Problem (PKP)) Let (¢,m,n) be positive
integers such thatm <n, H e F**", & € Fyy and 7 € S, be a permutation such
that H (r[x]) = 0. Given (H,x), the Permuted Kernel Problem PKP(q,m,n)
asks to find @ € S,, such that H (7[x]) = 0.

Hereafter, we are interpreting the PKP problem in matrix form namely the secret
permutation 7 is seen as a permutation matrix P € F3*" such that HPxz =0

3 New MPCitH Modeling for PKP

Our new MPCitH modeling for PKP relies on permutation matrices. Informally,
a permutation matrix is a square matrix of size n that features one 1 on each
row as well as one 1 on each column and is populated with 0 on all the remaining
coordinates. As such, it can be described by giving the n positions of the 1.



Given a secret position i € [0,n — 1], our modeling build a vector over Fy of size
n containing 1 in its ith coordinate and 0 in all the other coordinates. Doing
this for each secret positions and arranging these vectors in a matrix, one get a
matrix P over Fy containing one 1 on each row by construction. By checking
that the sum of the coefficients of each column of P is equal to 1, one can verify
that P is a permutation matrix.

Notations. Let n be a positive integer and let d = log,(n). Let B* : [0,n—1] —
F¢ be the function that given a value z € [0,n — 1] returns the vector in FJ
corresponding to its binary representation. Let T : F4 — F4 be the function that
given a vector x € FY returns its complement namely (1 @ zq,---,1® zq_1).

Permutation Matrix Modeling for PKP. Let pos € [0,n — 1]® be the
positions of the 1 on each row of the secret permutation matrix. Given as input

the vector t = (BP0 ... BPo-1) € (F2)", compute P € Fy*" as:
d-1 __
V(i,j) € [0,n—=1] x [0,n 1], Py =[] (Bl ®tix).
k=0

One can verify that P is a solution of a given PKP instance (H,x) by checking
that Vi € [0,n—1],372) P, ; = 1,Vj € [0,n—1],Y1) P,; = 1 and HPz = 0.

This new modeling presents two main benefits. Firstly, it allows to design a
PoK for the PKP problem with input size nlog,(n) which represent a significant
improvement with respect to the modeling currently used in PERK as illustrated
in Table 2. Secondly, this modeling is compatible with linear and multiplicative
sharing schemes contrarily to the modeling currently used in PERK. This allows
to benefit from the recent improvements in MPCitH techniques as discussed in
the next section.

Instance Modeling Witness size
PERK Shared Permutation nlogy(n) + nlogy(q)
PERK-2 Permutation Matrix nlogy(n)

Table 2: Witness size for different MPCitH modelings for the PKP problem.

4 The TCitH and VOLEitH Frameworks

The MPCitH paradigm [IKOSO07] allows to build zero-knowledge proof sys-
tems using techniques from secure multi-party computation (MPC). It has been
used extensively to design post-quantum signature schemes including PERK.



The MPCitH paradigm has been recently improved by the VOLE-in-the-Head
(VOLEitH) [BBASG™*23b] and the Threshold-Computation-in-the-Head (TCitH)
[FR23b,FR23a] frameworks. Using these frameworks, one can prove the knowl-
edge of a witness satisfying some polynomial constraints. In addition, a recent
work [BBM*24] has introduced a GGM tree related optimization that can be
leveraged by both frameworks.

The VOLEitH and TCitH proof systems feature some similarities as ex-
plained in [FR23a] and lead to similar performances whenever the considered
polynomial constraints are of degree 2 and the number of parties of the underly-
ing MPC protocol is big enough. However, whenever the considered polynomial
constraints feature a bigger degree, the VOLEitH framework is more interesting
than the TCitH one. The MPCitH modeling for PKP proposed in Section 3 can
be expressed easily as polynomial constraints of degree log,(n). As such, the
VOLEitH framework is more suited for this new modeling.

5 Resulting Improvements for PERK

5.1 Resulting sizes for PERK

The signature size of the PERK scheme can be significantly reduced using the
modeling described in Section 3 along with the VOLEitH proof system discussed
in Section 4 as illustrated in Table 3. Indeed, one can see that we are expecting
to reduce the (public key + signature) size to the [3.9 — 4.7] kB range.

Instance N Secret Key | Public Key Signature
PERK (Fast) 32 16 B 0.3 kB 8.1 kB
PERK (Short) 256 16 B 0.3 kB 5.8 kB
PERK-2 (Fast) 256 16 B 0.1 kB 4.6 kB
PERK-2 (Short) | 2048 16 B 0.1 kB 3.8 kB

Table 3: Expected improvement for PERK sizes for NIST security level 1.

5.2 Resulting performances for PERK

The MPCitH based schemes naturally feature a trade-off between signature size
and performance. Although the impact of the proposed modification on per-
formances is not known yet, we are expecting to reach better size/performance
trade-offs than the current version of PERK as suggested by theoretical anal-
ysis [BFG'24], known VOLEitH implementations [BBASG*23a, BBM*24] and



the fact that the proposed modeling no longer require to sample and compose a
large number of permutations. This explains why we consider values of N (num-
ber of parties involved in the emulated MPC protocol) as large as N = 2048
while the round 1 version of PERK only consider N < 256. We are currently
working on an implementation demonstrating those effects and are expecting to
reach better or similar performances than the current implementation of PERK.

6 Additional Applications of our Modeling

Our modeling relies on an efficient way to prove that a vector contains 1 in a
given coordinate and 0 in all its remaining coordinates. While this is useful
to prove that one knows a solution to a PKP instance as illustrated previously,
this feature is also of independent interest. Indeed, it can be used to improve
ring signatures [FR23a|, PoK for the Regular Syndrome Decoding |[CLY T 24]
and deniable authenticated KEM [GJK24] for instance. Additional applications
of our modeling will be explored in the full version of this paper.
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